Electrolyte solutions at curved electrodes. II. Microscopic approach.
نویسندگان
چکیده
Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.
منابع مشابه
Enhanced performance of layered titanate nanowire-based supercapacitor electrodes by nickel ion exchange.
Titania nanostructured materials have been used extensively for the fabrication of electrochemical capacitors. However, the devices typically exhibit relatively low capacitance and poor cycling stability. Herein, we report the synthesis of a core-shell heterostructure based on layered titanate nanowires coated with nickel hydroxide nanosheets on a titanium mesh, referred to as K2Ti4O9@Ni(OH)2/T...
متن کاملThe Effect of Different Electrodes on Humic Acid Removal by Electrocoagulation
The present study is about the reduction of humic acids (HA) by electrocoagulation (EC) method. Undesirable color, odor, taste, reacting with chlorine to produce toxic materials in water, and making a complex with heavy metal ions are some unfavorable environmental consequences of HA. Platinum and graphite as anode electrodes and platinum, titanium, and aluminum as cathode electrodes were used ...
متن کاملEnhancement of Electrochemical Hot Electron Injection into Electrolyte Solutions at Oxide-Covered Tantalum Electrodes by Thin Platinum Films
The Journal of Physical Chemistry B is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Article Enhancement of Electrochemical Hot Electron Injection into Electrolyte Solutions at Oxide-Covered Tantalum Electrodes by Thin Platinum Films Yung-Eun Sung, and Allen J. Bard J. Phys. Chem. B, 1998, 102 (49), 9806-9811 • DOI: 10.1021/jp982739p Downloaded fro...
متن کاملELECTROCHEMICAL BEHAVIOR OF GC, Pt AND Au ELECTRODES MODIFIED WITH THIN FILM OF COBALT HEXACYANOFERRATE
0A thin film of cobalt hexacyanoferrate (CoHCF), an analogue of mixed-valence Prussian blue, was deposited electrochemically on the glassy carbon, platinum and gold electrode surfaces in 0.5M KC1 solution. The electrochemical behavior of these modified electrodes show three couples of redox peaks by CV in a supporting electrolyte solution of 0.5M NaCl, whereas for Au modified electrode only ...
متن کاملModeling of Nanofiltration for Concentrated Electrolyte Solutions using Linearized Transport Pore Model
In this study, linearized transport pore model (LTPM) is applied for modeling nanofiltration (NF) membrane separation process. This modeling approach is based on the modified extended Nernst-Planck equation enhanced by Debye-Huckel theory to take into account the variations of activity coefficient especially at high salt concentrations. Rejection of single-salt (NaCl) electrolyte is inve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 146 15 شماره
صفحات -
تاریخ انتشار 2017